高級搜索 標王直達
石家莊包裝彩印  紙袋紙、杯紙  防油紙、防潮紙  其他包裝用紙  絲印輔助器材  絲印模具器材  ALC板批發(fā)  POF收縮膜  包裝機械  更多
 
 
發(fā)布信息當前位置: 首頁 » 供應 » 包裝機械 » 其他 »

SV015iG5A-2

點擊圖片查看原圖
品牌: SV015iG5A-2
單價: 3699.00元/臺
起訂: 1 臺
供貨總量: 10000 臺
發(fā)貨期限: 自買家付款之日起 3 天內(nèi)發(fā)貨
所在地: 上海 奉賢區(qū)
有效期至: 長期有效
最后更新: 2020-02-21
瀏覽次數(shù): 424
詢價
公司基本資料信息
 
 
產(chǎn)品詳細說明
SV015iG5A-2商業(yè)銷售點實時服務系統(tǒng)(POS)是實現(xiàn)商業(yè)自動化的重要基礎。當前,我國各商業(yè)銀行系統(tǒng)都已建立起各自傳統(tǒng)的借助有線接入的POS系統(tǒng),但隨著客戶資金轉(zhuǎn)帳、結算、支付量不斷增加和需求的日益多樣化,POS系統(tǒng)有線接入的缺點進一步呈現(xiàn)出來。 
目前,許多小型商戶和消費場所由于通訊線路的問題而不能使用POS終端,這使得銀行卡的使用集中在一些大型商場和高檔消費場所,從而失去了用銀行卡消費的大量機會。目前采用有線接入方式的POS機主要部署在大型賓館、商場和超市,而在其它小型賓館、超市、餐飲店、展覽會等場所,由于受到場地和有線通訊線路的限制,使得有線接入方式的POS機無法布署,持卡消費就很難實現(xiàn)。 
POS機由于受到有線接入方式的限制,不能根據(jù)需要大量進行配置,銀行卡的消費被局限在一定的范圍內(nèi)。特別是在有線通信不方便的地方有線POS系統(tǒng)無法使用,嚴重的制約了為持卡人提供實時服務的需求,也無法*保*持卡人迅速、準確、及時的轉(zhuǎn)帳與結算帳務處理。 
LS模塊 三菱伺服驅(qū)動器代理
【需要請聯(lián)系】
【1391-18864473】
【qq:937926739】
15601961570


嘉復欣科技針對目前有線通信POS系統(tǒng)存在的問題與不足,推出了借助GPRS移動數(shù)據(jù)通信公網(wǎng)平臺實現(xiàn)POS機接入的解決方案。基于GPRS的POS機無線接入方式可解決傳統(tǒng)POS只能在固定場合使用的問題,使POS終端不再受到有限通信網(wǎng)的限制。另外,GPRS無線接入與各類支付設備相結合的移動支付技術是當前的發(fā)展方向。如內(nèi)置GPRS無線接入模塊的移動POS機可應用于各類移動收費,例如上門收取公用事業(yè)費、出租車付費、交警罰款等。移動POS尤其適用于配送中心、客運票務中心、稅收部門、速遞公司、移動售貨廳、餐廳、外賣及電子商務交易等場合。 
二、現(xiàn)有有線接入方式 
POS是目前各商場、飯店、加油站等廣泛提供的刷卡消費業(yè)務的輔助工具,位于商場、加油站等地的POS機將獲得的用戶信用卡的數(shù)據(jù)(卡號、業(yè)務資料等)通過通信線路傳給銀行卡服務處理系統(tǒng)上,經(jīng)過處理的信息返回到POS機,從而完成用戶的刷卡消費業(yè)務。為了實現(xiàn)上述數(shù)據(jù)交換過程,在POS機與銀行主機之間必須進行數(shù)據(jù)通信。目前使用*廣泛的POS機接入方式是有線接入方式,而有線接入方式主要有兩種:一是基于電話網(wǎng)的點到點撥號接入方式和基于DDN的專線接入方式。 
1、電話撥號方式:當用戶刷卡后,POS機通過撥號接入銀行數(shù)據(jù)中心,接通后傳送交易數(shù)據(jù)。這種方式的*大問題是在安全上存在很大隱患,由于電話撥號保密性較差,電話撥號音可能會泄露用戶的密碼。另外,在使用電話撥號方式時,顧客每刷卡一次,POS機就撥號一次,需要10-20秒時間建立連接,因此每筆交易時間較長。同時,由于POS機使用商場業(yè)務電話,容易發(fā)生掉線,安全性能差,撥外線經(jīng)常發(fā)生困難,影響交易質(zhì)量。 
2、專線方式:大中型超市多臺POS機往往采用RS232接口聯(lián)網(wǎng)后通過一條專線連接到銀行數(shù)據(jù)中心。專線方式的優(yōu)點是線路傳輸質(zhì)量較高,但其缺點是DDN專線月租費較貴,而數(shù)據(jù)的傳輸量較低,降低了資源利用率。DDN專線初裝費約為5000.00—10000.00元,每月運行費約為800.00—1200.00元。(DDN專線費視電信具體標準而定)。 
三、GPRS無線接入方案的特點 
由變頻器構成的交流調(diào)速系統(tǒng)普遍存在的問題是,系統(tǒng)運行在低頻區(qū)域時,其性能不夠理想,主要表現(xiàn)在低頻啟動時啟動轉(zhuǎn)矩小,造成系統(tǒng)啟動困難甚至無法啟動。由于變頻器的非線性產(chǎn)生的高次諧波,引起電動機的轉(zhuǎn)距脈動及電動機發(fā)熱,并且電動機運行噪聲也加大。低頻穩(wěn)態(tài)運行時,受電網(wǎng)電壓波動或系統(tǒng)負載的變化及變頻器輸出電壓波形的奇變,將造成電動機的抖動。當變頻器距電動機距離較大時及高次諧波對控制電路的干擾,極易引起電動機的爬行。由于上述各種現(xiàn)象,嚴重降低由變頻器構成的調(diào)速系統(tǒng)的調(diào)速特性和動態(tài)品質(zhì)指標,本文對系統(tǒng)的低頻機械特性和變頻器的低頻特性進行分析,提出采取相應的措施,以使系統(tǒng)的低頻運行特性能得以改善。 
2 變頻器低頻機械特性 
2.1 低頻啟動特性 
異步電動機改變定子頻率F1,即可平滑地調(diào)節(jié)電動機的同步轉(zhuǎn)速,但是隨著F1的變化,電動機的機械特性也將發(fā)生改變,尤其是在低頻區(qū)域,根據(jù)異步電動機的*大轉(zhuǎn)距公式: 
Temax=3/2{np(U1/W1)2}/{R1/W1+/(R2/W1)2+(LL1+LL2)2} 式中np—電動機極對數(shù); 
R1—定子每相電阻; 
R2—折合到定子側的轉(zhuǎn)子每相電阻; 
LL1—定子每相漏感; 
LL2—折合到定子側的轉(zhuǎn)子每漏感; 
U1—電動機定子每相電壓; 
W1—電源角頻率 
可見Temax是隨著W1的降低而減小,在低頻時,R1已不可忽略。Temax將隨著W1的減小而減小,啟動轉(zhuǎn)距也將減小,甚至不能帶動負載。 
2.2 低頻穩(wěn)態(tài)特性 
電動機穩(wěn)態(tài)運行時的轉(zhuǎn)距公式如下: 
TL=3np(U1/W1)2SW1R2/{(SR1+R2)2+S2W2(LL1+LL2)2 } 
在角頻率W1為額定時,R1可以忽略。而在低頻時,R1已不能忽略,故在低頻區(qū)時由于R1上的壓降所占的比重增加,將無法維持M的恒定,特別是在電網(wǎng)電壓變化和負載變化時,系統(tǒng)將出現(xiàn)抖動和爬行。 
3 變頻器調(diào)速系統(tǒng)低頻特性 
3.1 諧波分析 
由變頻器構成的調(diào)速系統(tǒng),由于變頻器的非線性,電動機定子中除了基波電流外,還有各次諧波電流,由于高次諧波的存在,使電動機損耗和感抗增大,減少了cosφ,從而影響輸出轉(zhuǎn)距,并將產(chǎn)生6倍于基波頻率的脈動轉(zhuǎn)距。 
以電流波形中的5次、7次諧波來分析,在三相電動機定子電流中的5次諧波頻率為 F5=5F1 (F1為基波電流頻率),它在電動機氣隙中產(chǎn)生空間負序的磁勢和磁場,這個磁場的轉(zhuǎn)速 n51為基波電流所產(chǎn)生磁場的轉(zhuǎn)速n11的5倍,并且沿著與基波磁場反的方向旋轉(zhuǎn),由于電動機轉(zhuǎn)速一定,并假設接近n11,這樣由5次諧波磁勢在轉(zhuǎn)子內(nèi)感應出6倍于基波頻率的轉(zhuǎn)子電流,此電流與氣隙基波磁勢的合成作用產(chǎn)生6倍于基波頻率的脈動轉(zhuǎn)距。 
7次諧波所產(chǎn)生的磁場與基波同相序,但它所產(chǎn)生的旋轉(zhuǎn)磁場轉(zhuǎn)速7倍于基波旋轉(zhuǎn)磁場的轉(zhuǎn)速,故相應轉(zhuǎn)子電流諧波與氣隙主磁場的相對轉(zhuǎn)速也是6倍于基波頻率,也產(chǎn)生一個6倍于基波頻率的脈動轉(zhuǎn)距。 
以上兩個6倍于基波頻率的脈動轉(zhuǎn)距一齊使電動機的電磁轉(zhuǎn)距發(fā)生脈動,雖然其平均值為零,但脈動轉(zhuǎn)距使電動機轉(zhuǎn)速不均勻,在低頻運行時影響*大。 
3.2 準方波方式下脈動轉(zhuǎn)距的產(chǎn)生 
分別設ψ1、ψ2為定子磁鏈及轉(zhuǎn)子磁鏈的空間矢量,在穩(wěn)態(tài)準方波(QSW)運行方式時(橋中晶閘管用1800電角脈沖觸發(fā))ψ1在輸出周期內(nèi)沿著正六邊形的周邊運動。ψ2沿著與六邊形同心的圓周運動,在準方波運行方式下ψ1和ψ2運動是連續(xù)的,但它們且有重大的區(qū)別,當矢量ψ2以恒定定子電壓角速度W1旋轉(zhuǎn)時,矢量ψ1以恒定的線速度沿正六邊形周邊運行,矢量ψ1線速度恒定導致其角速度的變化,進而引起ψ1和ψ2的夾角δ變化,除此,當ψ1沿著六角形軌跡移動時其幅值在一定程度上也有變化。當電動機空載時,由于處于穩(wěn)態(tài)ψ1與ψ2的夾角與轉(zhuǎn)距T在W1t=0、π/6、π/3時為零,而當W1T≠0、π/6、π/3時,δ不為零,它與上面提到的ψ1幅值變化一起引起低頻轉(zhuǎn)距脈動,其頻率為定子電壓基波的6倍,當電動機帶負載時對應于一個恒定的δ均值,低頻轉(zhuǎn)距脈動將疊加于恒定轉(zhuǎn)距均值之上。 
4 系統(tǒng)低頻特性改善措施 
4.1 啟動轉(zhuǎn)距的提升 
由于系統(tǒng)在低頻時R1上的壓降影響,使系統(tǒng)的啟動轉(zhuǎn)距隨W1下降而減小,為此變頻器設有轉(zhuǎn)距提升功能,該功能可以調(diào)整低頻區(qū)域電動機的力矩,使之與負荷配合,增大啟動轉(zhuǎn)距。可選擇自動轉(zhuǎn)距提升和手動轉(zhuǎn)距提升模式,其原理是提升定子電壓也就相應提高了啟動轉(zhuǎn)距,但提升電壓設置過高,將導致電流過大引起電動機飽和、過熱或過電流跳閘。如1336PLUS系列變頻器的轉(zhuǎn)距提升功能,可自動調(diào)整提升電壓,以產(chǎn)生所需的電壓,可根據(jù)預定轉(zhuǎn)距所需的電流來選擇提升電壓,轉(zhuǎn)距提升在控制電流的同時使電動機處于*佳運行狀態(tài),在選擇手動轉(zhuǎn)距提升時,要結合實際情況來設定轉(zhuǎn)距提升值。 
4.2 改善低頻轉(zhuǎn)距脈動 
變頻器構成的交流調(diào)速系統(tǒng)的低頻轉(zhuǎn)距脈動直接影響系統(tǒng)動態(tài)特性,不論是變頻器的生產(chǎn)廠和系統(tǒng)集成的工程技術人員,都在盡力于改善低頻區(qū)脈動這一技術問題.如采用磁通控制方式、正弦波PWM控制方式,它不是按照調(diào)制正弦波和載波的交點來控制GTR的導通和關斷,而是始終使異步電動機的磁通接近正弦波,旋轉(zhuǎn)磁場的軌跡是圓形來決定GTR的導通規(guī)律。在很低的頻率下,*保*異步電動機在低速時旋轉(zhuǎn)均勻,從而擴大了變頻調(diào)速范圍,抑制異步電動機的振動和噪聲。其圓形旋轉(zhuǎn)磁場的實現(xiàn),是通過檢測磁通使控制環(huán)節(jié)隨時判斷實際磁通超過誤差范圍與否,來改變GTR的工作模式,從而*保*旋轉(zhuǎn)磁場的軌跡呈圓形,以減少轉(zhuǎn)距脈動。 
4.3 圓周PWM方法降低轉(zhuǎn)距脈動 
“圓周”的含義是指定子磁鏈ψ1空間矢量在高斯平面中沿著一個非常接近于圓周的多邊形,其以降低電動機脈動轉(zhuǎn)距為目的來確定電壓脈沖的寬度和位置。三相逆變器為全波橋式結構,如其運行在這樣一種方式下,當交流輸出端(a、b、c)之一在任何時候接通直流母線(應同時接到另一個直流母線上),這一原理從圖1(a)中可以明顯表示清楚。顯然交流輸出端接到直流母線方式有六種,這就導致定子電壓U1的空間矢量有六個位置,這六個位置如圖1(b)所示,圖1(b)中六種開/關狀態(tài)對應著U1的六種位置,圖中粗線位置表示開關1、3、6處于開的位置,投影所產(chǎn)生的瞬時相電壓如下: 
Va=Vb=1/3Vdc Vc=-2/3Vdc 
其余類推,符號Va、Vb、Vc代表三相輸出電壓的瞬時相電壓值,假如Ia+Ib+Ic=0由空間矢量在A、B、C軸上的垂直投影就可得到Va、Vb、Vc,除以上六種開/關狀態(tài)外,還有使開關1、3、5或2、4、6同時關斷兩種狀態(tài),在這種情況下,交流輸出端a、b、c接到同一電位上,U1及Ua、Ub、Uc順次變?yōu)榱?,將這種運行方式應用到一個三電平PWM逆變器上可獲得與兩電平PWM相比而言較低的諧波成分。 
PWM形式是一種斬波準方波調(diào)制,負載上的相電壓由矩形段和零電壓段(U1=0時)組成,在每個電壓脈沖時刻,矢量ψ1以恒定線速度移動,而在零電壓段保持靜止,然而由于矢量ψ2以恒定角速度W1轉(zhuǎn)動,ψ1和ψ2間的夾角δ就出現(xiàn)了,因此電壓斬波是引起高頻轉(zhuǎn)距脈動的主要原因,頻率與輸出電壓矩脈沖頻率相同。這是由于PWM自身固有的,實際上高頻轉(zhuǎn)矩脈動是很難消除的,并疊加于低頻轉(zhuǎn)矩脈動之上。為消除系統(tǒng)的低頻轉(zhuǎn)矩脈動可從以下兩種方式開展工作。 
(1) 在電壓脈沖中間點的時刻,矢量ψ1、ψ2間的夾角δ在穩(wěn)態(tài)運行時對于所有脈沖應保持恒定,消除由δ變化而產(chǎn)生的對低頻轉(zhuǎn)矩(頻率為6F1)的影響,在空載情況下δ=0盡管ψ1的幅值變化,低頻轉(zhuǎn)矩脈動仍然將被完全消除。 
(2) 在恒定的負載時(δ-cost≠0)僅僅ψ1幅值的變化引起低頻轉(zhuǎn)矩脈動,而負載引起ψ2幅值的變化可以忽略,因此必須獲得一個比較接近于圓周的ψ1矢量軌跡。 
圓周PWM是利用空載矢量ψ1的空間位置來確定電壓脈沖的中間點,即晶閘管導通段及零電壓段的合理組合,可以產(chǎn)生幅值變化可以忽略不計的ψ1,此原理如圖1所示,ψ1停止時刻(即零電壓段)用圓點標出,確定電壓脈沖位置使它們對稱,如圖中各橫坐標的中間點,脈沖寬度(即持續(xù)時間)與橫坐標長度相對應,所要求的輸出電壓來確定.自然電壓波形周期由ψ1矢量沿多邊形轉(zhuǎn)一周所需的時間確定。采用此方法在保持輸出電壓由零到*大值可變的同時,可有效的消除低頻轉(zhuǎn)矩脈動。
介紹了變頻調(diào)速技術節(jié)能分析,闡述了小區(qū)變頻恒壓供水系統(tǒng)基本構成和控制參數(shù)選擇、變頻器運行參數(shù)設置的要點,并就小區(qū)變頻恒壓供水系統(tǒng)的優(yōu)點進行了分析。

 
更多»本企業(yè)其它產(chǎn)品

[ 供應搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]